Gas-phase detonation propagation in mixture composition gradients.
نویسندگان
چکیده
The propagation of detonations through several fuel-air mixtures with spatially varying fuel concentrations is examined numerically. The detonations propagate through two-dimensional channels, inside of which the gradient of mixture composition is oriented normal to the direction of propagation. The simulations are performed using a two-component, single-step reaction model calibrated so that one-dimensional detonation properties of model low- and high-activation-energy mixtures are similar to those observed in a typical hydrocarbon-air mixture. In the low-activation-energy mixture, the reaction zone structure is complex, consisting of curved fuel-lean and fuel-rich detonations near the line of stoichiometry that transition to decoupled shocks and turbulent deflagrations near the channel walls where the mixture is extremely fuel-lean or fuel-rich. Reactants that are not consumed by the leading detonation combine downstream and burn in a diffusion flame. Detonation cells produced by the unstable reaction front vary in size across the channel, growing larger away from the line of stoichiometry. As the size of the channel decreases relative to the size of a detonation cell, the effect of the mixture composition gradient is lessened and cells of similar sizes form. In the high-activation-energy mixture, detonations propagate more slowly as the magnitude of the mixture composition gradient is increased and can be quenched in a large enough gradient.
منابع مشابه
Theory of Two-Phase Detonation-Part II: Structure
The structure of a two-phase steady detonation in a granulated solid propellant is studied, and existence conditions for a one-dimensional, steady two-phase detonation are given. Ordinary differential equations from continuum mixture theory are solved numerically to determine steady wave structure. In the limiting case where heat transfer and compaction effects are negligible, the model reduces...
متن کاملPrediction of methanol loss by hydrocarbon gas phase in hydrate inhibition unit by back propagation neural networks
Gas hydrate often occurs in natural gas pipelines and process equipment at high pressure and low temperature. Methanol as a hydrate inhibitor injects to the potential hydrate systems and then recovers from the gas phase and re-injects to the system. Since methanol loss imposes an extra cost on the gas processing plants, designing a process for its reduction is necessary. In this study, an accur...
متن کاملGas Detonation Forming by a Mixture of H2+O2 Detonation
Explosive forming is one of the unconventional techniques in which, most commonly, the water is used as the pressure transmission medium. One of the newest methods in explosive forming is gas detonation forming which uses a normal shock wave derived of gas detonation, to form sheet metals. For this purpose a detonation is developed from the reaction of H2+O2 mixture in a long cylindrical detona...
متن کاملEffect of Temperature on Detonation Propagation in Composition B
Composition B is a melt-castable explosive consisting of RDX crystals in a TNT matrix. At elevated temperatures, the TNT can flow or even melt, which affects the particle distribution and therefore the detonation propagation. To study this phenomenon, rate stick experiments were conducted at ambient conditions, at temperatures below the TNT melt, and at temperatures above the TNT melt. We field...
متن کاملPrediction of Structural Changes in Gas Hydrate for Methane and Ethane Mixture by Using Tangent Plane Distance Minimization
Abstract: Â In this study, the change in the crystalline structure of gas hydrate was predicted for ternary mixture of methane-ethane-water. For this purpose, the tangent plane distance (TPD) minimization method was used. First, the calculations were performed for the binary mixtures of methane-water and ethane-water as the gas and liquid phases. The results show that for a binary mixture of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
دوره 370 1960 شماره
صفحات -
تاریخ انتشار 2012